cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062020 a(n) = Sum_{i=1..n} Sum_{j=1..i} (prime(i) - prime(j)).

Original entry on oeis.org

0, 1, 6, 17, 44, 81, 142, 217, 324, 485, 666, 913, 1208, 1529, 1906, 2373, 2936, 3533, 4238, 5019, 5840, 6787, 7822, 8995, 10360, 11825, 13342, 14967, 16648, 18445, 20662, 23003, 25536, 28135, 31074, 34083, 37308, 40755, 44354, 48187, 52260
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = (5-2) + (5-3) + (3-2) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n<3, (n-1), 2*a[n-1] -a[n-2] +(n-1)*(Prime[n] -Prime[n-1])];
    Table[a[n], {n, 50}] (* G. C. Greubel, May 04 2022 *)
  • SageMath
    @CachedFunction
    def a(n): # A062020
        if (n<3): return (n-1)
        else: return 2*a(n-1) - a(n-2) + (n-1)*(nth_prime(n) - nth_prime(n-1))
    [a(n) for n in (1..50)] # G. C. Greubel, May 04 2022

Formula

a(n) = a(n-1) + n*prime(n) - Sum_{i = 1..n} prime(i), with a(0) = 0.
a(n) = 2*a(n-1) - a(n-2) + (n-1)*(prime(n) - prime(n-1)), with a(1) = 0, a(2) = 1.
a(n) = Sum_{j=1..n} (2*j - (n+1))*prime(j) = 2*A014285(n) - (n+1)*A007504(n). - G. C. Greubel, May 04 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001
Name edited by G. C. Greubel, May 04 2022