cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A062094 a(1) = 2, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

2, 12, 34, 217, 731, 1743, 2183, 3759, 21179, 121179, 931303, 1931303, 11175573, 11379829, 17896361, 18419721, 96919009, 889910891, 1889910891, 2742368917, 25741106537, 110203233579, 679231622473, 1679231622473, 7921256096487
Offset: 1

Views

Author

Amarnath Murthy, Jun 16 2001

Keywords

Examples

			a(1) = 2 is a prime hence a(2) = 12; a(3) = 34, 3*4 = 12 and 3<4.
		

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := (d = Divisors[n]; l = Length[d]; If[ EvenQ[l], ToExpression[ ToString[ d[[l/2]] ] <> ToString[ d[[l/2 + 1]] ]], ToExpression[ ToString[d[[l/2 + .5]] ] <> ToString[ d[[l/2 + .5]] ]]] ); NestList[f, 2, 25]

Extensions

More terms from Robert G. Wilson v, Aug 08 2001

A063383 a(1) = 6, a(n) = concatenation of two closest divisors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

6, 23, 123, 341, 1131, 2939, 12939, 57227, 89643, 329881, 1073083, 1197553, 7171079, 17171079, 57301247, 208327509, 1171780577, 1219684137, 1478297171, 2587571433, 2795835979, 8663322733, 13666409441, 113666409441, 1030771102733, 2114885171103, 6993025586797
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ] ] <> ToString[ d[[ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[[ l/2 + .5 ] ] ] <> ToString[ d[[ l/2 + .5 ] ] ] ] ] ); NestList[ f, 6, 25 ]
    tcf[n_]:=Module[{d=Divisors[n],len},len=Length[d]/2;FromDigits[Flatten[ IntegerDigits/@Take[d,{len,len+1}]]]]; ctc[n_]:=If[PrimeQ[ n], 10^IntegerLength[ n]+n,tcf[n]]; NestList[ctc,6,30] (* Harvey P. Dale, May 19 2019 *)
  • Python
    from sympy import divisors, isprime
    def aupton(terms):
        alst = [6]
        for n in range(2, terms+1):
            if isprime(alst[-1]): alst.append(int('1' + str(alst[-1])))
            else:
                divs = divisors(alst[-1])
                d1 = divs[(len(divs)-1)//2]
                d2 = alst[-1]//d1
                alst.append(int(str(d1) + str(d2)))
        return alst
    print(aupton(27)) # Michael S. Branicky, Jun 23 2021

Extensions

Definition clarified by Harvey P. Dale, May 19 2019

A063269 a(1) = 3, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

3, 13, 113, 1113, 2153, 12153, 34051, 172003, 1311313, 3473779, 5365543, 16913173, 34014973, 229148537, 479347809, 1807726517, 11807726517, 20529575173, 69833293981, 179443389167, 230839777353, 376946592451
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 3, 24 ]

A063380 a(1) = 4, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

4, 22, 211, 1211, 7173, 9797, 97101, 910789, 1182799, 1319029, 6719687, 7678761, 32559587, 257126691, 1591617149, 6653239233, 62767105999, 126149775659, 432933715713, 2435717774509, 6598336914323, 19495633384521
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 4, 24 ]

A063382 a(1) = 5, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

5, 15, 35, 57, 319, 1129, 11129, 31359, 310453, 1691837, 7241691, 15094799, 31486929, 159198031, 1159198031, 6203186877, 11721529237, 88429132553, 129487682919, 1228291054211, 1394483927247, 8800411584567, 34329256355023
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 5, 24 ]

A063384 a(1) = 7, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

7, 17, 117, 913, 1183, 1391, 13107, 51257, 151257, 381397, 577661, 4911789, 29116879, 112646989, 536920981, 1928258999, 11928258999, 25227472837, 46275452231, 212892173679, 370964057893, 1859199550327, 5593332415439
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ]] <> ToString[ d[[ l/2 + 1 ]] ]], ToExpression[ ToString[ d[[ l/2 + .5 ] ]] <> ToString[ d[[ l/2 + .5 ] ]] ]] ); NestList[ f, 7, 25 ]

A063403 a(1) = 8, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

8, 24, 46, 223, 1223, 11223, 87129, 189461, 414621, 2072003, 12072003, 34024001, 163920759, 354640253, 1074732999, 7377145687, 17377145687, 57053304579, 393145173803, 834736688841, 8062231035367, 26899299722333, 27745499695017
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ]] <> ToString[ d[[ l/2 + 1 ]] ]], ToExpression[ ToString[ d[[ l/2 + .5 ] ]] <> ToString[ d[[ l/2 + .5 ] ]] ]] ); NestList[ f, 8, 25 ]

A063423 a(1) = 9, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

9, 33, 311, 1311, 2357, 12357, 91373, 191373, 273701, 594639, 966071, 3792549, 7714919, 18474177, 36158059, 217166627, 415296747, 1269327263, 8581147923, 85531003291, 307572780863, 417501775143, 594709702027, 1334471501519
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 9, 25 ]

A063424 a(1) = 10, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

10, 25, 55, 511, 773, 1773, 9197, 17541, 91949, 143643, 347881, 3311051, 13311051, 35433757, 71499067, 72619847, 74179791, 82678973, 613313481, 1551395431, 1679289793, 4339053251, 6529966449, 9370214693, 71338602099, 222407320757
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 10, 25 ]
Showing 1-9 of 9 results.