A062110 A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
Offset: 0
Examples
Table A(n,k) (with rows n >= 0 and columns k >= 0) begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ... 1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, ... 1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, ... 1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, ... 1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, ... 1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ... ... - _Petros Hadjicostas_, Feb 15 2021 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 4, 5, 3, 1; 0, 8, 12, 9, 4, 1; 0, 16, 28, 25, 14, 5, 1; 0, 32, 64, 66, 44, 20, 6, 1; 0, 64, 144, 168, 129, 70, 27, 7, 1; 0, 128, 320, 416, 360, 225, 104, 35, 8, 1; ... - _Philippe Deléham_, Nov 30 2008
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, and Juana Sendra, Upper Hessenberg and Toeplitz Bohemians, arXiv:1907.10677 [cs.SC], 2019.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq., 21 (2018), #18.1.4.
Crossrefs
Programs
-
Mathematica
t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
-
PARI
a(i,j)=if(i<0 || j<0,0,polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i,j))
Formula
Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021
Extensions
Various sections edited by Petros Hadjicostas, Feb 15 2021
Comments