cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062190 Coefficient triangle of certain polynomials N(5; m,x).

Original entry on oeis.org

1, 1, 6, 1, 14, 21, 1, 24, 84, 56, 1, 36, 216, 336, 126, 1, 50, 450, 1200, 1050, 252, 1, 66, 825, 3300, 4950, 2772, 462, 1, 84, 1386, 7700, 17325, 16632, 6468, 792, 1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287, 1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=5) Laguerre triangle L(5; n+m,m)= A062138(n+m,m), n >= 0, is N(5; m,x)/(1-x)^(2*(m+3)), with the row polynomials N(5; m,x) := Sum_{k=0..m} a(m,k)*x^k.

Examples

			Triangle begins as:
  1;
  1,   6;
  1,  14,   21;
  1,  24,   84,    56;
  1,  36,  216,   336,    126;
  1,  50,  450,  1200,   1050,    252;
  1,  66,  825,  3300,   4950,   2772,     462;
  1,  84, 1386,  7700,  17325,  16632,    6468,    792;
  1, 104, 2184, 16016,  50050,  72072,   48048,  13728,   1287;
  1, 126, 3276, 30576, 126126, 252252,  252252, 123552,  27027,  2002;
  1, 150, 4725, 54600, 286650, 756756, 1051050, 772200, 289575, 50050, 3003;
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), this sequence (c=6).
Columns k: A028557 (k=1), A104676 (k=2), A104677 (k=3), A104678 (k=4), A104679 (k=5), A104680 (k=6).
Diagonals: A000389 (k=n), A027818 (k=n-1), A104670 (k=n-2), A104671 (k=n-3), A104672 (k=n-4), A104673 (k=n-5), A104674 (k=n-6).
Cf. A003516 (row sums), A113894 (main diagonal).

Programs

  • Magma
    A062190:= func< n,k | Binomial(n,k)*Binomial(n+5,k) >;
    [A062190(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2025
    
  • Maple
    A062190 := proc(m,k)
        add( (binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j,j=0..m) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    NN[5, m_, x_] := x^m*(2*m+5)!*Hypergeometric2F1[-m, -m, -2*m-5, (x-1)/x]/((m+5)!*m!); Table[CoefficientList[NN[5, m, x], x], {m, 0, 8}] // Flatten (* Jean-François Alcover, Sep 18 2013 *)
    A062190[n_,k_]:= Binomial[n,k]*Binomial[n+5,k];
    Table[A062190[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2025 *)
  • SageMath
    def A062190(n,k): return binomial(n,k)*binomial(n+5,k)
    print(flatten([[A062190(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 28 2025

Formula

T(m, k) = [x^k]N(5; m, x), with N(5; m, x) = ((1-x)^(2*(m+3)))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+6))).
N(5; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j).
N(5; m, x)= x^m*(2*m+5)! * 2F1(-m, -m; -2*m-5; (x-1)/x)/((m+5)!*m!). - Jean-François Alcover, Sep 18 2013
T(n, k) = binomial(n, k)*binomial(n+5, k). - G. C. Greubel, Feb 28 2025