A062190 Coefficient triangle of certain polynomials N(5; m,x).
1, 1, 6, 1, 14, 21, 1, 24, 84, 56, 1, 36, 216, 336, 126, 1, 50, 450, 1200, 1050, 252, 1, 66, 825, 3300, 4950, 2772, 462, 1, 84, 1386, 7700, 17325, 16632, 6468, 792, 1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287, 1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002
Offset: 0
Examples
Triangle begins as: 1; 1, 6; 1, 14, 21; 1, 24, 84, 56; 1, 36, 216, 336, 126; 1, 50, 450, 1200, 1050, 252; 1, 66, 825, 3300, 4950, 2772, 462; 1, 84, 1386, 7700, 17325, 16632, 6468, 792; 1, 104, 2184, 16016, 50050, 72072, 48048, 13728, 1287; 1, 126, 3276, 30576, 126126, 252252, 252252, 123552, 27027, 2002; 1, 150, 4725, 54600, 286650, 756756, 1051050, 772200, 289575, 50050, 3003;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), this sequence (c=6).
Columns k: A028557 (k=1), A104676 (k=2), A104677 (k=3), A104678 (k=4), A104679 (k=5), A104680 (k=6).
Programs
-
Magma
A062190:= func< n,k | Binomial(n,k)*Binomial(n+5,k) >; [A062190(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2025
-
Maple
A062190 := proc(m,k) add( (binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j,j=0..m) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Nov 29 2015
-
Mathematica
NN[5, m_, x_] := x^m*(2*m+5)!*Hypergeometric2F1[-m, -m, -2*m-5, (x-1)/x]/((m+5)!*m!); Table[CoefficientList[NN[5, m, x], x], {m, 0, 8}] // Flatten (* Jean-François Alcover, Sep 18 2013 *) A062190[n_,k_]:= Binomial[n,k]*Binomial[n+5,k]; Table[A062190[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2025 *)
-
SageMath
def A062190(n,k): return binomial(n,k)*binomial(n+5,k) print(flatten([[A062190(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 28 2025
Formula
T(m, k) = [x^k]N(5; m, x), with N(5; m, x) = ((1-x)^(2*(m+3)))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+6))).
N(5; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+5-j)!/((m+5)!*(m-j)!))*(x^(m-j))*(1-x)^j).
N(5; m, x)= x^m*(2*m+5)! * 2F1(-m, -m; -2*m-5; (x-1)/x)/((m+5)!*m!). - Jean-François Alcover, Sep 18 2013
T(n, k) = binomial(n, k)*binomial(n+5, k). - G. C. Greubel, Feb 28 2025
Comments