cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062275 Array A(n, k) = n^k * k^n, n, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 16, 3, 0, 0, 4, 72, 72, 4, 0, 0, 5, 256, 729, 256, 5, 0, 0, 6, 800, 5184, 5184, 800, 6, 0, 0, 7, 2304, 30375, 65536, 30375, 2304, 7, 0, 0, 8, 6272, 157464, 640000, 640000, 157464, 6272, 8, 0, 0, 9, 16384, 750141, 5308416, 9765625
Offset: 0

Views

Author

Henry Bottomley, Jul 02 2001

Keywords

Comments

Here 0^0 is defined to be 1. - Wolfdieter Lang, May 27 2018

Examples

			A(3, 2) = 3^2 * 2^3 = 9*8 = 72.
The array A(n, k) begins:
n\k 0 1   2   3    4     5      6      7       8        9       10 ...
0:  1 0   0   0    0     0      0      0       0        0        0 ...
1:  0 1   2   3    4     5      6      7       8        9       10 ...
2:  0 2  16  72  256   800   2304   6272   16384    41472   102400 ...
3:  0 3  72 729 5184 30375 157464 750141 3359232 14348907 59049000 ...
...
The triangle T(n, k) begins:
n\k  0  1    2      3      4      5      6    7  8  9 ...
0:   1
1:   0  0
2:   0  1    0
3:   0  2    2      0
4:   0  3   16      3      0
5:   0  4   72     72      4      0
6:   0  5  256    729    256      5      0
7:   0  6  800   5184   5184    800      6    0
8:   0  7 2304  30375  65536  30375   2304    7  0
9:   0  8 6272 157464 640000 640000 157464 6272  8  0
... - _Wolfdieter Lang_, May 22 2018
		

Crossrefs

Columns and rows of A, or columns and diagonals of T, include A000007, A001477, A007758, A062074, A062075 etc. Diagonals of A include A062206, A051443, A051490. Sum of rows of T are A062817(n), for n >= 1

Programs

  • Mathematica
    {{1}}~Join~Table[(#^k k^#) &[n - k], {n, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 24 2018 *)
  • PARI
    t1(n)=n-binomial(round(sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    a(n)=t1(n)^t2(n)*t2(n)^t1(n) \\ Eric Chen, Jun 09 2018

Formula

From Wolfdieter Lang, May 22 2018: (Start)
As a sequence: a(n) = A003992(n)*A004248(n).
As a triangle: T(n, k) = (n-k)^k * k^(n-k), for n >= 1 and k = 1..n. (End)