cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062296 a(n) = number of entries in n-th row of Pascal's triangle divisible by 3.

Original entry on oeis.org

0, 0, 0, 2, 1, 0, 4, 2, 0, 8, 7, 6, 9, 6, 3, 10, 5, 0, 16, 14, 12, 16, 11, 6, 16, 8, 0, 26, 25, 24, 27, 24, 21, 28, 23, 18, 33, 30, 27, 32, 25, 18, 31, 20, 9, 40, 35, 30, 37, 26, 15, 34, 17, 0, 52, 50, 48, 52, 47, 42, 52, 44, 36, 58, 53, 48, 55, 44, 33, 52, 35, 18, 64, 56, 48, 58, 41
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Comments

Number of zeros in row n of triangle A083093. - Reinhard Zumkeller, Jul 11 2013

Examples

			When n=3 the row is 1,3,3,1 so a(3) = 2.
		

Crossrefs

Programs

  • Haskell
    a062296 = sum . map ((1 -) . signum) . a083093_row
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Maple
    p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n,k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1-p(n),n=0..83); # Emeric Deutsch
  • Mathematica
    a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 26 2018 *)
    Table[n + 1 - 2^(DigitCount[n, 3, 1])*3^(DigitCount[n, 3, 2]), {n, 0, 76}] (* Shenghui Yang, Jan 08 2025 *)
  • Python
    from sympy.ntheory import digits
    def A062296(n):
        s = digits(n,3)[1:]
        return n+1-(3**s.count(2)<Chai Wah Wu, Jul 24 2025

Formula

a(n) = n + 1 - A006047(n).
a(n) = n + 1 - A206424(n) - A227428(n). - Reinhard Zumkeller, Jul 11 2013
a(n) = n + 1 - 2^A062756(n)*3^A081603(n). - Shenghui Yang, Jan 08 2025

Extensions

More terms from Emeric Deutsch, Feb 03 2005