A062296 a(n) = number of entries in n-th row of Pascal's triangle divisible by 3.
0, 0, 0, 2, 1, 0, 4, 2, 0, 8, 7, 6, 9, 6, 3, 10, 5, 0, 16, 14, 12, 16, 11, 6, 16, 8, 0, 26, 25, 24, 27, 24, 21, 28, 23, 18, 33, 30, 27, 32, 25, 18, 31, 20, 9, 40, 35, 30, 37, 26, 15, 34, 17, 0, 52, 50, 48, 52, 47, 42, 52, 44, 36, 58, 53, 48, 55, 44, 33, 52, 35, 18, 64, 56, 48, 58, 41
Offset: 0
Examples
When n=3 the row is 1,3,3,1 so a(3) = 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- D. L. Wells, Residue counts modulo three for the fibonacci triangle, Appl. Fib. Numbers, Proc. 6th Int Conf Fib. Numbers, Pullman, 1994 (1996) 521-536.
Programs
-
Haskell
a062296 = sum . map ((1 -) . signum) . a083093_row -- Reinhard Zumkeller, Jul 11 2013
-
Maple
p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n,k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1-p(n),n=0..83); # Emeric Deutsch
-
Mathematica
a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 26 2018 *) Table[n + 1 - 2^(DigitCount[n, 3, 1])*3^(DigitCount[n, 3, 2]), {n, 0, 76}] (* Shenghui Yang, Jan 08 2025 *)
-
Python
from sympy.ntheory import digits def A062296(n): s = digits(n,3)[1:] return n+1-(3**s.count(2)<
Chai Wah Wu, Jul 24 2025
Formula
a(n) = n + 1 - A006047(n).
Extensions
More terms from Emeric Deutsch, Feb 03 2005
Comments