cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062513 Product of unitary divisors of n is divided by n^(number of distinct prime factors).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 60, 1, 1, 1, 1, 1, 66, 1, 1, 1, 70, 1, 1, 1, 1, 1, 1, 1, 78, 1, 1, 1, 1, 1, 84, 1, 1, 1, 1, 1, 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jul 13 2001

Keywords

Examples

			n=210, with 4 p-divisors; all its 16 divisors are unitary; product=210^(16/2)=3782285936100000000, while 210^4=1944810000; a(210)=3782285936100000000/1944810000=1944810000.
		

Crossrefs

Programs

  • Mathematica
    Table[n^(2^(PrimeNu[n] - 1) - PrimeNu[n]), {n,1,50}] (* G. C. Greubel, May 20 2017 *)
  • PARI
    for(n=1,50, print1(round(n^(2^(omega(n) -1) - omega(n))), ", ")) \\ G. C. Greubel, May 20 2017

Formula

a(n) = A061537(n)/[n^A001221(n)].
a(n) = n^[(A034444(n)/2)-A001221(n)].