cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062536 Increasing values for the radius of the inner Soddy circle associated with three unequal kissing circles, the four radii of the system forming a primitive quadruple.

Original entry on oeis.org

5, 9, 17, 36, 39, 64, 74, 81, 100
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2001

Keywords

Comments

A family of nonsquare values for a(n) may be generated by the formula a(n) = n{(n + 2)^2 + 1 }/2 for n not a multiple of 5. For some values of a(n) which are squares, the three kissing circles share a common external tangent and their radii are related by 1/sqrt(x) = 1/sqrt(y) + 1/sqrt(z).

Examples

			The quadruples (9,28,63,252) and (74,312,481,888) for instance are respectively the 2nd and 7th primitive solution set (r,x,y,z) satisfying the given explicit formula for r.
		

Formula

The inner Soddy circle radius r is explicitly given by 1/r = 1/x + 1/y + 1/z + 2/R with R^2 = xyz/(x + y +z) where x, y, z are the kissing circles' radii and R the radius of the circle orthogonal to the latter three.