A062537 Nodes in riff (rooted index-functional forest) for n.
0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 3, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 6, 5, 6, 5, 5, 5, 6, 6, 5, 6, 5, 6, 6, 5, 6, 5, 4, 5, 6, 6, 4, 5, 7, 6, 6, 6, 5, 7, 5, 6, 6, 4, 7, 7, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 4, 6, 5, 7, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 7, 6, 5, 5, 7, 6, 6, 7, 5, 7, 8
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jon Awbrey, Illustrations of riffs for small integers.
- Jon Awbrey, Riffs and Rotes.
Programs
-
Haskell
import Data.Function (on) a062537 1 = 0 a062537 n = sum $ map (+ 1) $ zipWith ((+) `on` a062537) (map a049084 $ a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Feb 26 2013
-
Mathematica
a[1] = 0; a[n_] := a[n] = Sum[{p, e} = pe; a[PrimePi[p]] + a[e] + 1, {pe, FactorInteger[n]}]; Array[a, 105] (* Jean-François Alcover, Jul 26 2019 *)
Formula
a(Product(p_i^e_i)) = Sum(a(i)+a(e_i)+1), product over nonzero e_i in prime factorization.
a(n) = Sum_{k=1..A001221(n)} (a(A049084(A027748(n,k))) + a(A124010(n,k)) + 1). - Reinhard Zumkeller, Feb 26 2013
Comments