A062559 A B2 sequence consisting of powers of primes but not primes: a(n) = least value from A025475 such that sequence increases and pairwise sums of distinct elements are all distinct.
4, 8, 9, 16, 25, 27, 49, 64, 121, 243, 256, 343, 512, 729, 961, 1024, 1331, 1369, 1849, 2048, 2187, 2197, 2401, 3125, 3481, 4096, 4913, 5329, 6561, 6859, 6889, 8192, 10201, 12769, 14641, 15625, 16384, 16807, 19683, 22201, 22801, 27889, 28561, 29791, 32768
Offset: 0
Keywords
Programs
-
Python
from itertools import count, islice from sympy import factorint def A062559_gen(): # generator of terms aset2, alist = set(), [] for k in count(0): if len(f:=factorint(k).values()) == 1 and max(f) > 1: bset2 = set() for a in alist: if (b:=a+k) in aset2: break bset2.add(b) else: yield k alist.append(k) aset2.update(bset2) A062559_list = list(islice(A062559_gen(),30)) # Chai Wah Wu, Sep 11 2023
Extensions
More terms from Sean A. Irvine, Apr 03 2023
Comments