A062693 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 3.
1254, 2605, 2774, 3502, 4199, 4669, 4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, 9654, 10199, 10549, 11005, 11029, 12166, 12270, 12534, 12935, 13317, 14965, 15655, 16151, 16206, 16887, 17958, 18221, 19046, 19726, 20005, 20366
Offset: 0
Keywords
Links
- A. Dujella, A. S.Janfeda, S. Salami, A Search for High Rank Congruent Number Elliptic Curves, JIS 12 (2009) 09.5.8.
- N. D. Elkies, Algorithmic (a.k.a. Computational) Number Theory: Tables, Links, etc.
- Fidel Ronquillo Nemenzo, All congruent numbers less than 40000, Proc. Japan Acad. Ser. A Math. Sci., Volume 74, Number 1 (1998), 29-31. See Table IV p. 31.
Programs
-
PARI
r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1] for(n=1,1e4,if(r(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011
Comments