A062703 Squares that are the sum of two consecutive primes.
36, 100, 144, 576, 1764, 2304, 3844, 5184, 7056, 8100, 12100, 14400, 14884, 30276, 41616, 43264, 48400, 53824, 57600, 69696, 93636, 106276, 112896, 138384, 148996, 166464, 168100, 197136, 206116, 207936, 219024, 220900, 224676, 272484, 298116, 302500, 352836
Offset: 1
Examples
prime(7) + prime(8) = 17 + 19 = 36 = 6^2.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..22054 (terms 1..100 from Harry J. Smith)
Crossrefs
Programs
-
Mathematica
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{m = Floor[n/2]}, s = PrevPrim[m] + NextPrim[m]; If[s == n, True, False]]; Select[ Range[550], f[ #^2] &]^2 t := Table[Prime[n] + Prime[n + 1], {n, 15000}]; Select[t, IntegerQ[Sqrt[#]] &] (* Carlos Eduardo Olivieri, Feb 25 2015 *)
-
PARI
{for(n=1,100,(p=precprime(n^2/2))+nextprime(p+2) == n^2 && print1(n^2", "))} \\ Zak Seidov, Feb 17 2011
-
PARI
A062703(n)=A074924(n)^2 \\ M. F. Hasler, Jan 03 2020
-
Python
from itertools import count, islice from sympy import nextprime, prevprime def agen(): # generator of terms for k in count(4, step=2): kk = k*k if prevprime(kk//2+1) + nextprime(kk//2-1) == kk: yield kk print(list(islice(agen(), 37))) # Michael S. Branicky, May 24 2022
Formula
Extensions
Edited by Robert G. Wilson v, Mar 02 2003
Edited (crossrefs completed, obsolete PARI code deleted) by M. F. Hasler, Jan 03 2020