A062707 Table by antidiagonals of n*k*(k+1)/2.
0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 6, 3, 0, 0, 10, 12, 9, 4, 0, 0, 15, 20, 18, 12, 5, 0, 0, 21, 30, 30, 24, 15, 6, 0, 0, 28, 42, 45, 40, 30, 18, 7, 0, 0, 36, 56, 63, 60, 50, 36, 21, 8, 0, 0, 45, 72, 84, 84, 75, 60, 42, 24, 9, 0, 0, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 0
Offset: 0
Examples
0 0 0 0 0 0 0 0 0 0 1 3 6 10 15 21 28 36 0 2 6 12 20 30 42 56 72 0 3 9 18 30 45 63 84 108 0 4 12 24 40 60 84 112 144 0 5 15 30 50 75 105 140 180 0 6 18 36 60 90 126 168 216 0 7 21 42 70 105 147 196 252 0 8 24 48 80 120 168 224 288
Links
- G. C. Greubel, Antidiagonals n = 0..100, flattened
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1,2)))); # G. C. Greubel, Sep 02 2019
-
Magma
[k*Binomial(n-k+1,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2019
-
Maple
seq(seq(k*binomial(n-k+1,2), k=0..n), n=0..12); # G. C. Greubel, Sep 02 2019
-
Mathematica
Table[k*Binomial[n-k+1, 2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 02 2019 *)
-
PARI
T(n,k) = k*binomial(n-k+1,2); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 02 2019
-
Sage
[[k*binomial(n-k+1,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 02 2019