A062710 Number of cyclic subgroups of general affine group over GF(2), AGL(n,2).
2, 17, 590, 105824, 69300688, 194965719104, 2426497181267968, 177803451495373322240, 52976870608237776911450112, 110350007913361454793759188320256
Offset: 1
Keywords
Examples
a(3) = 1/phi(1)+91/phi(2)+224/phi(3)+420/phi(4)+224/phi(6)+384/phi(7) = 590.
References
- V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
Links
Crossrefs
Cf. A062250.
Formula
a(n) = Sum_{d} |{g element of AGL(n, 2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.