cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A062791 Moebius transform of A001405 (binomial(n, floor(n/2))).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 34, 64, 123, 241, 461, 900, 1715, 3396, 6423, 12800, 24309, 48477, 92377, 184500, 352679, 704969, 1352077, 2703168, 5200290, 10398883, 20058174, 40113164, 77558759, 155110827, 300540194, 601067520, 1166802646, 2333581909, 4537567606
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			For n = 7, binomial(7,3) = 35, A001405(7/d) = {binomial(7,3), binomial(1,0)} = {35, 1}, mu(d) = {1, -1}, the sum is a(7) = 35 - 1 = 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(binomial(d, iquo(d, 2))*mobius(n/d), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 09 2017
  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, Floor[#/2]] * MoebiusMu[n/#] &]; Array[a, 35] (* Amiram Eldar, May 28 2025 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d, d\2) * moebius(n/d)); \\ Amiram Eldar, May 28 2025

Formula

a(n) = Sum_{d|n} A001405(n/d)*mu(d).

Extensions

Offset corrected by Eric Rowland, Jul 09 2017
Showing 1-1 of 1 results.