A062830 a(n) = #{ 0 <= k <= n : K(n, k) = 0 } where K(n, k) is the Kronecker symbol. This is the number of integers 0 <= k <= n that are not coprime to n.
1, 0, 2, 2, 3, 2, 5, 2, 5, 4, 7, 2, 9, 2, 9, 8, 9, 2, 13, 2, 13, 10, 13, 2, 17, 6, 15, 10, 17, 2, 23, 2, 17, 14, 19, 12, 25, 2, 21, 16, 25, 2, 31, 2, 25, 22, 25, 2, 33, 8, 31, 20, 29, 2, 37, 16, 33, 22, 31, 2, 45, 2, 33, 28, 33, 18, 47, 2, 37, 26, 47, 2
Offset: 0
Examples
a(10) = 7, since 10 - phi(10) + 1 = 10 - 4 + 1 = 7. Also, since 10 is a squarefree semiprime, 7 represents the sum of the distinct prime factors of 10.
Links
- Peter Luschny, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory); 1, 0, seq(k - phi(k) + 1, k = 2..70); # Wesley Ivan Hurt, Aug 27 2013 K := (n, k) -> NumberTheory:-KroneckerSymbol(n, k): seq(nops(select(k -> K(n, k) = 0, [seq(0..n)])), n = 0..70); # Alternative: T := (n, k) -> ifelse(NumberTheory:-AreCoprime(n, k), 1, 0): seq(nops(select(k -> T(n, k) = 0, [seq(0..n)])), n = 0..70); # Peter Luschny, May 15 2024
-
Mathematica
Table[n - EulerPhi[n] + 1 - Boole[n == 1], {n, 0, 70}] (* Wesley Ivan Hurt, Aug 27 2013 *) Table[Count[Table[KroneckerSymbol[n, k], {k, 0, n}], 0], {n, 0, 70}] (* Peter Luschny, May 15 2024 *)
-
PARI
j=[1,0]; for(n=2, 200, j=concat(j, n+1-eulerphi(n))); j
-
SageMath
print([sum(kronecker(n, k) == 0 for k in range(n + 1)) for n in range(70)]) # Peter Luschny, May 16 2024
Formula
a(n) = n - phi(n) + 1 for n >= 2. (previous name)
From Wesley Ivan Hurt, Aug 27 2013: (Start)
a(n) = A051953(n) + 1 for n >= 2.
a(n) = n - A000010(n) + 1 for n >= 2.
a(n) = 2*A067392(n)/n for n > 1. - Robert G. Wilson v, Jul 16 2019
Extensions
Offset set to 0, a(0) = 1 added, a(1) adapted and new name by Peter Luschny, May 15 2024
Comments