A062861 Numbers which are sums of squares of consecutive numbers (possibly including squares of negative numbers).
0, 1, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 19, 25, 28, 29, 30, 31, 35, 36, 41, 44, 49, 50, 54, 55, 56, 60, 61, 64, 69, 77, 81, 85, 86, 90, 91, 92, 96, 100, 105, 110, 113, 121, 126, 135, 139, 140, 141, 144, 145, 146, 149, 154, 169, 170, 174, 181, 182, 190, 194, 195, 196
Offset: 0
Keywords
Examples
13, 14, 15 and 16 are in the sequence since 13 = 2^2 + 3^2, 14 = 1^2 + 2^2 + 3^2, 15 = (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2 and 16 = 4^2.
Links
Programs
-
Maple
filter:= proc(n) ormap(k -> issqr(-3*k^4+3*k^2+36*k*n) and ((3*k-3*k^2+sqrt(-3*k^4+3*k^2+36*k*n))/(6*k))::integer, numtheory:-divisors(6*n)) end proc: filter(0):= true: select(filter, [$0..200]); # Robert Israel, Jan 22 2017
-
Mathematica
filterQ[n_] := AnyTrue[Divisors[6n], IntegerQ[Sqrt[-3#^4 + 3#^2 + 36#*n]] && IntegerQ[(3# - 3#^2 + Sqrt[-3#^4 + 3#^2 + 36#*n])/(6#)]&]; filterQ[0] = True; Select[Range[0, 200], filterQ] (* Jean-François Alcover, Feb 27 2019, after Robert Israel *)
-
PARI
{ isA062861(t) = fordiv(6*t,k, z=(k^2-1)/3; if(issquare(4*t/k-z), return(k)); if(z>4*t/k,break); ); 0 } \\ Max Alekseyev, Apr 26 2012