cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062866 Triangle of number of permutations by barycenter.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 1, 4, 14, 4, 1, 1, 5, 31, 46, 31, 5, 1, 1, 6, 66, 146, 282, 146, 66, 6, 1, 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1, 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1, 1, 9, 529, 2235, 16615, 34659, 85831, 83122, 85831, 34659, 16615, 2235, 529, 9, 1
Offset: 0

Views

Author

Olivier Gérard, Jun 26 2001

Keywords

Comments

The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.

Examples

			(1,3,2,5,7,6,4) has difference (0,1,-1,1,2,0,-3) and signs (0,1,-1,1,1,0,-1) with total 1. This is one of 1289 such permutations of degree 7.
Triangle begins:
:                                  1                              ;
:                                  1                              ;
:                                  2                              ;
:                           1,     4,    1                        ;
:                     1,    4,    14,    4,    1                  ;
:               1,    5,   31,    46,   31,    5,   1             ;
:          1,   6,   66,  146,   282,  146,   66,   6,   1        ;
:     1,   7, 134,  392, 1289,  1394, 1289,  392, 134,   7, 1     ;
:  1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1  ;
		

Crossrefs

Columns k=0-4 give: A062868, A179562, A169934, A179564, A179565.
Row sums give A000142.

Programs

  • Maple
    b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,
          add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b({$1..n}, 0)):
    seq(T(n), n=0..11);  # Alois P. Heinz, Jul 31 2018
  • Mathematica
    row[n_] := Sort[Tally[Total[Sign[# - Range[n]]]& /@ Permutations[Range[n]] ]][[All, 2]]; Array[row, 9] // Flatten (* Jean-François Alcover, Oct 07 2016 *)

Formula

From Alois P. Heinz, Jul 31 2018: (Start)
T(n,k) = T(n,-k).
Sum_{k>=0} T(n,k) = A179566(n). (End)
Conjecture: e.g.f.: Sum_{n>=0} Sum_{k} T(n,k) * t^k * z^n / n! = (1-t^2) * exp(z) / (exp(t*z) - t^2 * exp(z/t)). - Robert S. Maier, Jan 17 2025