A062866 Triangle of number of permutations by barycenter.
1, 1, 2, 1, 4, 1, 1, 4, 14, 4, 1, 1, 5, 31, 46, 31, 5, 1, 1, 6, 66, 146, 282, 146, 66, 6, 1, 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1, 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1, 1, 9, 529, 2235, 16615, 34659, 85831, 83122, 85831, 34659, 16615, 2235, 529, 9, 1
Offset: 0
Examples
(1,3,2,5,7,6,4) has difference (0,1,-1,1,2,0,-3) and signs (0,1,-1,1,1,0,-1) with total 1. This is one of 1289 such permutations of degree 7. Triangle begins: : 1 ; : 1 ; : 2 ; : 1, 4, 1 ; : 1, 4, 14, 4, 1 ; : 1, 5, 31, 46, 31, 5, 1 ; : 1, 6, 66, 146, 282, 146, 66, 6, 1 ; : 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1 ; : 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1 ;
Links
- Alois P. Heinz, Rows n = 0..20, flattened
Crossrefs
Programs
-
Maple
b:= proc(s, t) option remember; (n-> `if`(n=0, x^t, add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b({$1..n}, 0)): seq(T(n), n=0..11); # Alois P. Heinz, Jul 31 2018
-
Mathematica
row[n_] := Sort[Tally[Total[Sign[# - Range[n]]]& /@ Permutations[Range[n]] ]][[All, 2]]; Array[row, 9] // Flatten (* Jean-François Alcover, Oct 07 2016 *)
Formula
From Alois P. Heinz, Jul 31 2018: (Start)
T(n,k) = T(n,-k).
Sum_{k>=0} T(n,k) = A179566(n). (End)
Conjecture: e.g.f.: Sum_{n>=0} Sum_{k} T(n,k) * t^k * z^n / n! = (1-t^2) * exp(z) / (exp(t*z) - t^2 * exp(z/t)). - Robert S. Maier, Jan 17 2025
Comments