A062887 Smallest multiple of 2n+1 with the property that its digits are odd and each digit is two less (mod 10) than the previous digit, or 0 if no such number exists.
1, 3, 5, 7, 9, 319, 975, 75, 7531, 19, 197531975319, 3197, 75, 5319, 319, 31, 3197531975319, 53197531975, 1975319, 975, 531975, 1975319753197, 19753197531975, 75319753197531, 319753197531975319, 753197531975319753
Offset: 0
Examples
a(7) = 975 = 13*75 has decreasing odd digits.
Programs
-
Maple
l := 0:for i from 1 to 35 do for j from 1 to 5 do a := 0:for h from 1 to i do a := 10*a+((2*j+1-2*h) mod 10):end do:l := l+1:q[l] := a:end do:end do:s := seq(q[ll],ll=1..l); for i from 1 to 65 do k := 1:while((s[k] mod (2*i-1))>0) do k := k+1:end do: w[i] := s[k]:end do:seq(w[j],j=1..65);
Extensions
More terms from Sascha Kurz, Mar 25 2002
Comments