A062965 Positive numbers which are one less than a perfect square that is also another power.
15, 63, 80, 255, 624, 728, 1023, 1295, 2400, 4095, 6560, 9999, 14640, 15624, 16383, 20735, 28560, 38415, 46655, 50624, 59048, 65535, 83520, 104975, 117648, 130320, 159999, 194480, 234255, 262143, 279840, 331775, 390624, 456975, 531440, 614655
Offset: 1
Keywords
Examples
a(2) = 63 because the perfect square 64 = 8^2 = 4^3.
References
- William Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington D.C., 1999, p. 65.
- Leonhard Euler, "Variae observationes circa series infinitas," Opera Omnia, Ser. 1, Vol. 14, pp. 216-244.
- Nicolao Fvss, "Demonstratio Theorematvm Qvorvndam Analyticorvm," Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 8 (1794) 223-226.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Leonhard Euler, Variae observationes circa series infinitas.
- Eric Weisstein's World of Mathematics, Perfect Power.
Programs
-
Mathematica
Take[ Select[ Range[ 2, 150 ], GCD@@(Last/@FactorInteger[ # ])>1& ]^2-1] (* corrected by Jon Maiga, Sep 28 2019 *)
-
Python
from sympy import mobius, integer_nthroot def A062965(n): def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax**2-1 # Chai Wah Wu, Aug 14 2024
Formula
From Terry D. Grant, Oct 25 2020: (Start)
a(n) = A001597(n+1)^2 - 1.
Sum_{k>=1} 1/a(k) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>=1} 1/(a(k)+1) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).
(End)
Extensions
More terms from Dean Hickerson, Jul 24 2001