cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062965 Positive numbers which are one less than a perfect square that is also another power.

Original entry on oeis.org

15, 63, 80, 255, 624, 728, 1023, 1295, 2400, 4095, 6560, 9999, 14640, 15624, 16383, 20735, 28560, 38415, 46655, 50624, 59048, 65535, 83520, 104975, 117648, 130320, 159999, 194480, 234255, 262143, 279840, 331775, 390624, 456975, 531440, 614655
Offset: 1

Views

Author

Jason Earls, Jul 16 2001

Keywords

Examples

			a(2) = 63 because the perfect square 64 = 8^2 = 4^3.
		

References

  • William Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington D.C., 1999, p. 65.
  • Leonhard Euler, "Variae observationes circa series infinitas," Opera Omnia, Ser. 1, Vol. 14, pp. 216-244.
  • Nicolao Fvss, "Demonstratio Theorematvm Qvorvndam Analyticorvm," Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 8 (1794) 223-226.

Crossrefs

Programs

  • Mathematica
    Take[ Select[ Range[ 2, 150 ], GCD@@(Last/@FactorInteger[ # ])>1& ]^2-1] (* corrected by Jon Maiga, Sep 28 2019 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A062965(n):
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2-1 # Chai Wah Wu, Aug 14 2024

Formula

From Terry D. Grant, Oct 25 2020: (Start)
a(n) = A001597(n+1)^2 - 1.
Sum_{k>=1} 1/a(k) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>=1} 1/(a(k)+1) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).
(End)

Extensions

More terms from Dean Hickerson, Jul 24 2001