cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340588 Squares of perfect powers.

Original entry on oeis.org

1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 20736, 28561, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1000000
Offset: 1

Views

Author

Terry D. Grant, Sep 21 2020

Keywords

Crossrefs

Cf. A153158 (complement within positive squares).

Programs

  • Maple
    q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))<>2):
    select(q, [i^2$i=1..1000])[];  # Alois P. Heinz, Nov 26 2024
  • Mathematica
    Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2]
  • Python
    from sympy import mobius, integer_nthroot
    def A340588(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001597(n)^2.
a(n+1) = A062965(n) + 1. - Hugo Pfoertner, Sep 29 2020
Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).

A062757 Denominator of sum of first n terms of the series 1/15 + 1/63 + 1/80 ... in which the denominators are perfect squares - 1 which are simultaneously other powers, e.g. a(1) = 15 because 16 = 4^2 = 2^4, a perfect square that is also a fourth power; hence 16-1 = 15 qualifies as a term.

Original entry on oeis.org

15, 315, 5040, 85680, 278460, 42840, 14608440, 540512280, 10810245600, 46844397600, 480155075400, 145486987846200, 17749412517236400, 5916470839078800, 10769949084069775600, 312328523438023492400
Offset: 1

Views

Author

Jason Earls, Jul 16 2001

Keywords

Examples

			a(2)=63 because the perfect square 64= 8^2 = 4^3.
		

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington D.C., 1999, p. 65.
  • L. Euler, "Variae observationes circa series infinitas," Opera Omnia, Ser. 1, Vol. 14, pp. 216-244.

Crossrefs

Programs

  • Mathematica
    Table[ Denominator[ Plus@@(Take[ Select[ Range[ 2, 150 ], GCD@@(Last/@FactorInteger[ # ])>1& ]^2-1, k ]^-1) ], {k, 1, 16} ]

Extensions

More terms from Dean Hickerson, Jul 24 2001
Showing 1-2 of 2 results.