cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063010 Carryless binary square of n; also Moser-de Bruijn sequence written in binary.

Original entry on oeis.org

0, 1, 100, 101, 10000, 10001, 10100, 10101, 1000000, 1000001, 1000100, 1000101, 1010000, 1010001, 1010100, 1010101, 100000000, 100000001, 100000100, 100000101, 100010000, 100010001, 100010100, 100010101, 101000000, 101000001
Offset: 0

Views

Author

Henry Bottomley, Jul 03 2001

Keywords

Comments

Numbers that are sums of distinct powers of 100. - David Wasserman, Feb 26 2008

Examples

			a(11)=1000101, since 11 in binary is 1011 and binary carryless sum of 1011000, 0, 10110 and 1011 is 1000101.
		

Crossrefs

Cf. Moser-de Bruijn sequence A000695, carryless decimal squares A059729, pre-carry binary squares A063009.

Programs

  • Mathematica
    With[{k = 100}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 5]]] (* Michael De Vlieger, Oct 29 2022 *)
  • PARI
    a(n) = fromdigits(binary(n),100); \\ Ruud H.G. van Tol, Dec 05 2022
    
  • Python
    def A063010(n): return int(bin(int(bin(n)[2:],4))[2:]) # Chai Wah Wu, Apr 09 2025

Formula

a(n) = A062033(n)/10, i.e., with final zero removed.
a(n) = Sum_{k>=0} A030308(n,k)*A098608(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 100^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

More terms from David Wasserman, Feb 26 2008