cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063027 Reversion of y - y^2 - y^3 + y^4 - y^5.

Original entry on oeis.org

0, 1, 1, 3, 9, 33, 126, 510, 2127, 9113, 39809, 176735, 794937, 3615045, 16593156, 76773972, 357692784, 1676664234, 7901590287, 37416151209, 177935914254, 849461877990, 4069507806000, 19557840481380, 94267485120510, 455575848843726, 2207117072396682, 10717034365197286
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^3 + y^4 - y^5, {y, 0, 30}], x], x]
  • PARI
    concat(0, Vec(serreverse(x - x^2 - x^3 + x^4 - x^5 + O(x^30)))) \\ Michel Marcus, Jan 08 2019
  • Sage
    # uses[Reversion from A063022]
    Reversion(x - x^2 - x^3 + x^4 - x^5, 24) # Peter Luschny, Jan 08 2019
    

Formula

D-finite with recurrence 6289*n*(n-1)*(n-2) *(n-3)*a(n) -4*(n-1)*(n-2)*(n-3) *(7679*n -12346)*a(n-1) -2*(n-2)*(n-3)*(12781*n^2 -51281*n +57160)*a(n-2) +4*(n-3) *(23279*n^3 -195345*n^2 +561232*n -561366)*a(n-3) +(-18127*n^4 +159410*n^3 -257225*n^2 -962690*n+2410872) *a(n-4) -40*(5*n-22) *(5*n-26)*(5*n-24)*(5*n-23)*a(n-5)=0 for n-5>=1. - R. J. Mathar, Mar 24 2023

Extensions

More terms from Michel Marcus, Jan 08 2019