A063048 Numbers n such that the Reverse and Add! trajectory of n (presumably) does not reach a palindrome and does not join the trajectory of any term m < n.
196, 879, 1997, 7059, 10553, 10563, 10577, 10583, 10585, 10638, 10663, 10668, 10697, 10715, 10728, 10735, 10746, 10748, 10783, 10785, 10787, 10788, 10877, 10883, 10963, 10965, 10969, 10977, 10983, 10985, 12797, 12898, 13097, 13197, 13694
Offset: 1
Examples
1997 is a term since the trajectory of 1997 (presumably) does not lead to a number which occurs in the trajectory of 196 or of 879 (actually checked for the first 10000 terms of these trajectories). The trajectory of 1997 joins the trajectory of 106 at 97768 (cf. A070796), but 106 is not a term of the present sequence.
References
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..21491 (terms 1..1711 from Klaus Brockhaus).
- Klaus Brockhaus, Illustration: Distribution of terms below 2000000
- Klaus Brockhaus, List of terms below 2000000
- A.H.M. Smeets, log_10(a(n)) versus log_10(n)
- Index entries for sequences related to Reverse and Add!
Crossrefs
Programs
-
Mathematica
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *) utraj = {}; Select[Range[0, 14000], (x = NestWhileList[ # + IntegerReverse[#] &, #, ! PalindromeQ[#] &, 1, limit]; If[Length[x] >= limit && Intersection[x, utraj] == {}, utraj = Union[utraj, x]; True, utraj = Union[utraj, x]]) &] (* Robert Price, Oct 16 2019 *)
Comments