cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063104 a(0) = 0, a(n) = smallest composite k such that phi(k + 2^n) = phi(k) + 2^n; also cototient(k + 2^n) = cototient(k).

Original entry on oeis.org

0, 6, 12, 24, 39, 84, 69, 75, 213, 1092, 249, 1131, 8736, 13413, 21201, 1275, 2193, 279552, 98337, 968727, 71085, 2783555, 646869, 3145959, 1805781, 5798435, 787605, 27962075, 2073033, 282181709, 1150329, 10380353, 516201, 150807855, 141521295, 860867981
Offset: 0

Views

Author

Labos Elemer, Aug 08 2001

Keywords

Examples

			n=4, a(4)=39, Phi[39]+16=24+16=40=Phi[55]; a(14) = 21201, Phi(21201) + 2^14 = 13680 + 16384 = 30064 = Phi(37585).
		

Crossrefs

Programs

  • Mathematica
    Do[k = 4; While[ PrimeQ[k] || EulerPhi[k + 2^n] != EulerPhi[k] + 2^n, k++ ]; Print[k], {n, 1, 28} ]
  • PARI
    { n=0; f="b063104.txt"; write(f, "0 0"); for (n=1, 28, k=4; while (isprime(k) || eulerphi(k + 2^n) != eulerphi(k) + 2^n, k++); write(f, n, " ", k) ) } \\ Harry J. Smith, Aug 18 2009

Formula

a(n) = Min{x: A000010(n)+2^n = A000010(x+2^n)} = Min{x: A051953(x+2^n) = A051953(n)}

Extensions

More terms from Robert G. Wilson v, Nov 03 2001
a(29)-a(35) from Donovan Johnson, Aug 18 2011