cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063198 Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 10 ).

Original entry on oeis.org

0, 1, 3, 1, 3, 5, 3, 5, 7, 5, 7, 9, 7, 9, 11, 9, 11, 13, 11, 13, 15, 13, 15, 17, 15, 17, 19, 17, 19, 21, 19, 21, 23, 21, 23, 25, 23, 25, 27, 25, 27, 29, 27, 29, 31, 29, 31, 33, 31, 33
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2001

Keywords

Comments

The dimension of weight n is apparently given by 0, 0, 2, 1, 0, 3, 2, 1, 4,... etc as in A063942. - R. J. Mathar, Jul 14 2015

Crossrefs

Cf. A063942.

Programs

  • Maple
    s0star := proc(n)
        local pf,a,p,e ;
        if n = 1 then
            1;
        else
            a :=1 ;
            for pf in ifactors(n)[2] do
                p := op(1,pf) ;
                e := op(2,pf) ;
                if e =1 then
                    a := a*(1-1/p) ;
                elif e = 2 then
                    a := a*(1-1/p-1/p^2) ;
                else
                    a := a*(1-1/p)*(1-1/p^2) ;
                end if;
            end do:
            a ;
        end if;
    end proc:
    nuInfstar := proc(n)
        local pf,a,p,e ;
        if n = 1 then
            1;
        else
            a :=1 ;
            for pf in ifactors(n)[2] do
                p := op(1,pf) ;
                e := op(2,pf) ;
                if type(e,'odd') then
                    return 0;
                elif e = 2 then
                    a := a*(p-2) ;
                else
                    a := a*(p-1)^2*p^(e/2-2) ;
                end if;
            end do:
            a ;
        end if;
    end proc:
    nu2star := proc(n)
        local pf,a,p,e ;
        if n = 1 then
            1;
        else
            a :=1 ;
            for pf in ifactors(n)[2] do
                p := op(1,pf) ;
                e := op(2,pf) ;
                if p = 2 then
                    if e =1 or e =2  then
                        a := -a ;
                    elif e =3 then
                        ;
                    else
                        return 0 ;
                    end if;
                elif modp(p,4) = 1 then
                    if e = 2 then
                        a := -a ;
                    else
                        return 0;
                    end if;
                else
                    if e = 1 then
                        a := -2*a ;
                    elif e = 2 then
                        ;
                    else
                        return 0;
                    end if;
                end if;
            end do:
            a ;
        end if;
    end proc:
    nu3star := proc(n)
        local pf,a ;
        if n = 1 then
            1;
        else
            a :=1 ;
            for pf in ifactors(n)[2] do
                p := op(1,pf) ;
                e := op(2,pf) ;
                if p = 3 then
                    if e =1 or e =2  then
                        a := -a ;
                    elif e =3 then
                        ;
                    else
                        return 0 ;
                    end if;
                elif modp(p,3) = 1 then
                    if e = 2 then
                        a := -a ;
                    else
                        return 0;
                    end if;
                else
                    if e = 1 then
                        a := -2*a ;
                    elif e = 2 then
                        ;
                    else
                        return 0;
                    end if;
                end if;
            end do:
            a ;
        end if;
    end proc:
    c2 := proc(k)
        1/4+floor(k/4)-k/4 ;
    end proc:
    c3 := proc(k)
        1/3+floor(k/3)-k/3 ;
    end proc:
    g0star := proc(k,N)
        local a;
        a := (k-1)/12*N*s0star(N) -nuInfstar(N)/2 +c2(k)*nu2star(N)+c3(k)*nu3star(N) ;
        if k/2 = 1 then
            a := a+numtheory[mobius](N) ;
        end if;
        a;
    end proc:
    A063198 := proc(n)
        g0star(2*n,10) ;
    end proc:
    A063199 := proc(n)
        g0star(2*n,11) ;
    end proc:
    A063200 := proc(n)
        g0star(2*n,15) ;
    end proc:
    A063201 := proc(n)
        g0star(2*n,18) ;
    end proc:
    A063205 := proc(n)
        g0star(2*n,29) ;
    end proc: # R. J. Mathar, Jul 19 2024

Formula

G.f.: x^2*(1+2*x-2*x^2+x^3) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 15 2015
For n>1, a(n) = (6*n-3+12*cos(2*n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017