cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063215 Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 47 ).

Original entry on oeis.org

4, 11, 19, 27, 35, 41, 51, 57, 65, 73, 81, 87, 97, 103, 111, 119, 127, 133, 143, 149, 157, 165, 173, 179, 189, 195, 203, 211, 219, 225, 235, 241, 249, 257, 265, 271, 281, 287, 295, 303, 311, 317, 327, 333, 341, 349, 357, 363, 373, 379
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2001

Keywords

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 6, {4, 11, 19, 27, 35, 41}[[n]], a[n-2] + a[n-3] - a[n-5]]; Array[a, 50] (* Jean-François Alcover, Dec 06 2016 after Colin Barker *)
    LinearRecurrence[{0,1,1,0,-1},{4,11,19,27,35,41},50] (* Harvey P. Dale, Aug 25 2025 *)
  • PARI
    a(n)=if(n>1, ([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,0,1,1,0]^(n-1)*[5;11;19;27;35])[1,1], 4) \\ Charles R Greathouse IV, Nov 27 2016

Formula

a(n) = a(n-2)+a(n-3)-a(n-5) for n>6. G.f.: x*(4+11*x+15*x^2+12*x^3+5*x^4-x^5)/((1 -x)^2*(1 +x)*(1 +x +x^2)). - Colin Barker, Sep 27 2012