A063383 a(1) = 6, a(n) = concatenation of two closest divisors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).
6, 23, 123, 341, 1131, 2939, 12939, 57227, 89643, 329881, 1073083, 1197553, 7171079, 17171079, 57301247, 208327509, 1171780577, 1219684137, 1478297171, 2587571433, 2795835979, 8663322733, 13666409441, 113666409441, 1030771102733, 2114885171103, 6993025586797
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ] ] <> ToString[ d[[ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[[ l/2 + .5 ] ] ] <> ToString[ d[[ l/2 + .5 ] ] ] ] ] ); NestList[ f, 6, 25 ] tcf[n_]:=Module[{d=Divisors[n],len},len=Length[d]/2;FromDigits[Flatten[ IntegerDigits/@Take[d,{len,len+1}]]]]; ctc[n_]:=If[PrimeQ[ n], 10^IntegerLength[ n]+n,tcf[n]]; NestList[ctc,6,30] (* Harvey P. Dale, May 19 2019 *)
-
Python
from sympy import divisors, isprime def aupton(terms): alst = [6] for n in range(2, terms+1): if isprime(alst[-1]): alst.append(int('1' + str(alst[-1]))) else: divs = divisors(alst[-1]) d1 = divs[(len(divs)-1)//2] d2 = alst[-1]//d1 alst.append(int(str(d1) + str(d2))) return alst print(aupton(27)) # Michael S. Branicky, Jun 23 2021
Extensions
Definition clarified by Harvey P. Dale, May 19 2019