cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063383 a(1) = 6, a(n) = concatenation of two closest divisors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

6, 23, 123, 341, 1131, 2939, 12939, 57227, 89643, 329881, 1073083, 1197553, 7171079, 17171079, 57301247, 208327509, 1171780577, 1219684137, 1478297171, 2587571433, 2795835979, 8663322733, 13666409441, 113666409441, 1030771102733, 2114885171103, 6993025586797
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ] ] <> ToString[ d[[ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[[ l/2 + .5 ] ] ] <> ToString[ d[[ l/2 + .5 ] ] ] ] ] ); NestList[ f, 6, 25 ]
    tcf[n_]:=Module[{d=Divisors[n],len},len=Length[d]/2;FromDigits[Flatten[ IntegerDigits/@Take[d,{len,len+1}]]]]; ctc[n_]:=If[PrimeQ[ n], 10^IntegerLength[ n]+n,tcf[n]]; NestList[ctc,6,30] (* Harvey P. Dale, May 19 2019 *)
  • Python
    from sympy import divisors, isprime
    def aupton(terms):
        alst = [6]
        for n in range(2, terms+1):
            if isprime(alst[-1]): alst.append(int('1' + str(alst[-1])))
            else:
                divs = divisors(alst[-1])
                d1 = divs[(len(divs)-1)//2]
                d2 = alst[-1]//d1
                alst.append(int(str(d1) + str(d2)))
        return alst
    print(aupton(27)) # Michael S. Branicky, Jun 23 2021

Extensions

Definition clarified by Harvey P. Dale, May 19 2019