cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063411 Number of cyclic subgroups of order 8 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 5040, 6249600, 15958978560, 138492255928320, 3264016697241108480, 167083534977568918732800, 26809984170742141560784158720, 15381567503446460704398211326935040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063391(n)-A063387(n))/4.