A063450 Numbers k such that d(k+1) < 2*d(k), where d() is the number of divisors function A000005.
2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105
Offset: 1
Keywords
Examples
d(k+1) < 2*d(k) holds mainly for composites and for the primes 2 and 3. E.g.: For k = 10: 2*d(10) = 2*4 = 8 > 2 = d(11). For k = 3: 2*d(3) = 2*2 = 4 > d(4) = 3. For k = 2: 2*d(2) = 2*2 = 4 > d(3) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Programs
-
Mathematica
SequencePosition[DivisorSigma[0,Range[110]],?(#[[2]]<2#[[1]]&)][[All,1]]// Quiet (* _Harvey P. Dale, Aug 19 2020 *)
-
PARI
is(m) = numdiv(m + 1) < 2*numdiv(m); \\ Harry J. Smith, Aug 21 2009
Extensions
Formatting by Charles R Greathouse IV, Mar 24 2010