cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A063504 Decimal expansion of e^Pi - Pi^e.

Original entry on oeis.org

6, 8, 1, 5, 3, 4, 9, 1, 4, 4, 1, 8, 2, 2, 3, 5, 3, 2, 3, 0, 1, 9, 3, 4, 1, 6, 3, 4, 0, 4, 8, 1, 2, 3, 5, 2, 6, 7, 6, 7, 9, 1, 1, 0, 8, 6, 0, 3, 5, 1, 9, 7, 4, 4, 2, 4, 2, 0, 4, 3, 8, 5, 5, 4, 5, 7, 4, 1, 6, 3, 1, 0, 2, 9, 1, 3, 3, 4, 8, 7, 1, 1, 9, 8, 4, 5, 2, 2, 4, 4, 3, 4, 0, 4, 0, 6, 1, 8, 8, 1, 4, 4, 5, 0, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jul 30 2001

Keywords

Comments

A classic calculus analysis problem is to discover whether e^Pi or Pi^e is the greater without the use of a calculator.

Examples

			0.681534914418223532301934163404812352676791108603519744242043855457416... - _Harry J. Smith_, Aug 24 2009
		

References

  • Paul J. Nahin, When Least Is Best, How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible, Princeton University Press, Princeton NJ, 2004, Page 144.
  • Alfred S. Posamentier & Ingmar Hehmann, Pi: A Biography of the World's Most Mysterious Number, Prometheus Books, NY 2002, pages 146, 301-304.

Crossrefs

Equals A039661 - A059850.
Cf. A063503.

Programs

  • Mathematica
    RealDigits[N[E^Pi - Pi^E, 100]][[1]]
  • PARI
    { default(realprecision, 20080); e=exp(1); x=10*(e^Pi - Pi^e); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b063504.txt", n, " ", d)) } \\ Harry J. Smith, Aug 24 2009

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A064441 Increasing partial quotients of e^Pi - Pi^e (A063504).

Original entry on oeis.org

1, 2, 7, 11, 124, 146, 205, 1121, 2101, 3333, 20899, 45415, 54103, 67629, 148987, 319183, 757657
Offset: 1

Views

Author

Robert G. Wilson v, Oct 01 2001

Keywords

Crossrefs

Cf. A063503 (continued fraction).

Programs

  • Mathematica
    t1 = ContinuedFraction[ N[ E^Pi - Pi^E, 9.8 10^5], 952040]; a = 0; Do[ If[ t1[[n]] > a, a = t1[[n]]; Print[a]], {n, 1, 952040} ]
Showing 1-2 of 2 results.