A063519 Least composite k such that phi(k+12n) = phi(k)+12n and sigma(k+12n) = sigma(k) + 12n where phi is the Euler totient function and sigma is the sum of divisors function.
65, 95, 341, 95, 161, 115, 629, 203, 145, 203, 365, 155, 185, 155, 301, 185, 329, 235, 1541, 287, 185, 287, 413, 205, 329, 215, 469, 215, 905, 371, 365, 305, 553, 371, 1037, 235, 1145, 623, 445, 371, 35249, 295, 1133, 371, 497, 515, 749, 413, 305, 671, 565
Offset: 1
Keywords
Examples
a(97)=10217 because 10217 is composite, phi(10217)+1164 = 9600+1164 = 10764 = phi(11381) and sigma(10217)+1164 = 10836+1164 = 12000 = sigma(11381) with 1164 = 12*97 and there is no smaller composite with these properties.
Formula
Extensions
Name corrected by Sean A. Irvine, Apr 30 2023
Comments