A063534 Numbers k such that C(k) = H(k) + d(k), where C(k) is Chowla's function A048050, H(k) is the half-totient function A023022 and d(k) is the number of divisors function A000005.
6, 8, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[1000], DivisorSigma[1, #] - 1 - # == EulerPhi[#]/2 + DivisorSigma[0, #] &] (* Paolo Xausa, Apr 17 2024 *)
-
PARI
C(n)=sigma(n)-n-1; H(n)=eulerphi(n)/2; j=[]; for(n=1,1200, if(C(n)==H(n)+numdiv(n),j=concat(j,n))); j
-
PARI
{ n=0; for (m=1, 10^9, if (sigma(m) - m - 1 == eulerphi(m)/2 + numdiv(m), write("b063534.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009
-
PARI
is(n) = {my(f = factor(n)); sigma(f) - n - 1 == eulerphi(f) / 2 + numdiv(f);} \\ Amiram Eldar, Apr 15 2024
Formula
Conjecture: a(n) = A001748(n), n <> 2. - R. J. Mathar, Dec 15 2008
The conjecture is false. The least counterexample is a(11546) = 368335 = 5 * 11 * 37 * 181. The next counterexample is 4922335, and there are no more below 10^10. - Amiram Eldar, Apr 15 2024