A063596 Least k >= 0 such that 6^k has exactly n 0's in its decimal representation.
0, 10, 9, 13, 19, 43, 56, 41, 94, 79, 113, 100, 88, 112, 124, 127, 138, 176, 144, 175, 174, 168, 170, 210, 245, 228, 182, 237, 287, 260, 312, 321, 294, 347, 389, 365, 401, 386, 390, 419, 460, 425, 438, 426, 488, 490, 520, 458, 489, 521, 513
Offset: 0
Crossrefs
Programs
-
Mathematica
a = {}; Do[k = 0; While[ Count[ IntegerDigits[6^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a With[{pwr6=Table[{n,DigitCount[6^n,10,0]},{n,1000}]},Join[{0},Transpose[ Table[ SelectFirst[pwr6,#[[2]]==i&],{i,60}]][[1]]]] (* Harvey P. Dale, Dec 15 2014 *)
-
PARI
A063596(n)=for(k=0, oo, #select(d->!d, digits(6^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018