A063606 Smallest k >= 0 such that 7^k has exactly n 0's in its decimal representation.
0, 4, 9, 13, 25, 55, 39, 41, 45, 70, 69, 65, 75, 107, 109, 134, 167, 142, 156, 196, 157, 205, 214, 180, 213, 183, 162, 251, 263, 276, 268, 290, 306, 295, 369, 313, 332, 293, 353, 340, 357, 387, 367, 476, 334, 509, 363, 474, 454, 488, 453
Offset: 0
Crossrefs
Programs
-
Mathematica
a = {}; Do[k = 0; While[ Count[ IntegerDigits[7^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a Module[{p7=DigitCount[#,10,0]&/@(7^Range[600]),nn=60},Join[{0},Flatten[ Table[ Position[p7,n,1,1],{n,nn}]]]] (* Harvey P. Dale, Apr 12 2022 *)
-
PARI
A063606(n)=for(k=n, oo, #select(d->!d, digits(5^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018