A063610 Smallest k such that 7^k has exactly n 4's in its decimal representation.
1, 2, 10, 15, 26, 32, 33, 58, 62, 50, 46, 89, 102, 108, 90, 118, 130, 122, 146, 144, 112, 138, 196, 224, 226, 212, 256, 250, 259, 239, 218, 254, 386, 260, 318, 292, 353, 321, 358, 326, 392, 401, 330, 396, 427, 442, 438, 443, 450, 449, 474
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
a = {}; Do[k = 1; While[ Count[ IntegerDigits[7^k], 4] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a Module[{nn=50,p7s},p7s=Table[DigitCount[7^n,10,4],{n,20nn}];Join[{1}, Table[ Position[p7s,i,{1},1],{i,nn}]]]//Flatten (* Harvey P. Dale, Jun 13 2016 *)
Extensions
Name corrected by Jon E. Schoenfield, Jun 26 2018