A076255
a(n) = floor(t^n), where t=3450844193^(1/9) (approximately 11.4754).
Original entry on oeis.org
11, 131, 1511, 17341, 198997, 2283583, 26205133, 300715537, 3450844193, 39599967967, 454427199648, 5214753707584, 59841612147821, 686709046151502, 7880290940381527, 90429834371744720, 1037722465625775937
Offset: 1
a(4) = floor(t^4) = floor(3450844193^(4/9)) = 17341, which is prime, like each other term in the sequence.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see page 69, exercise 1.75.
A076357
a(n) = floor(t^n) where t = 39661481813^(1/10) (approximately 11.4772).
Original entry on oeis.org
1, 11, 131, 1511, 17351, 199151, 2285711, 26233621, 301089179, 3455668247, 39661481813, 455203748458, 5224475817304, 59962484179977, 688202919252740, 7898659712736578, 90654694294744401, 1040464318828877723, 11941643035453940036, 137056923342374688074
Offset: 0
a(5) = floor(t^5) = floor(39661481813^(1/2)) = 199151.
- Richard Crandall and Carl Pomerance, Prime Numbers - a Computational Perspective, Springer, 2001, page 69, exercise 1.75.
A086758
a(n) is the smallest m such that the integer part of the first n powers of m^(1/n) are primes.
Original entry on oeis.org
2, 5, 13, 31, 631, 173, 409, 967, 3450844193, 39661481813, 2076849234433, 52134281654579, 14838980942616539, 260230524377962793, 4563650703502319197, 80032531899785490253, 172111744128569095516889
Offset: 1
a(5)=631 because floor(631^(1/5)) = 3, floor(631^(2/5)) = 13, floor(631^(3/5)) = 47, floor(631^(4/5)) = 173 and floor(631^(5/5)) = 631 are primes and 631 is the smallest m with this property.
a(8)=967 because the sequence {2, 5, 13, 31, 73, 173, 409, 967} consists entirely of primes, the i-th term in the sequence being floor(967^(i/8)) and 967 is the smallest integer with this property.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 1.75, p. 69.
-
Do[Print[For[m=1, Union[Table[PrimeQ[Floor[Prime[m]^(k/n)]], {k, n}]]!={True}, m++ ]; Prime[m]], {n, 8}]
A094106
a(n) is the maximal length L of a "power floor prime" sequence, i.e., a sequence of the form floor(x^k), k = 1, 2, ..., L such that floor(x) = prime(n).
Original entry on oeis.org
8, 7, 8, 5, 10, 12, 16, 14, 18, 22, 24, 26, 27, 28, 34, 35, 37, 39, 40, 45, 43, 46, 49, 51, 55, 57
Offset: 1
Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), May 02 2004
a(1)=8 because for x=111/47 the sequence [x^k], k=1,2,... 2,5,13,31,73,173,409,967,... starts with 8 primes and this is the maximum for any x with [x]=2. (Compare also A063636, though the rational number x = 1287/545 used there is not of minimal height!)
- Crandall and Pomerance, "Prime numbers, a computational perspective", p. 69, Research Problem 1.75.
a(22) = 46 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Jun 03 2004
a(23) = 49 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Jun 27 2004
a(24) = 51 from Johann Wiesenbauer (j.wiesenbauer(AT)tuwien.ac.at), Aug 08 2004
a(25) and a(26) from Michael Kenn (michael.kenn(AT)philips.com), Jan 03 2006, who says: To achieve this result I used a shared network of 37 computers over the Christmas holidays. The total calculation time was equivalent to slightly more than 1 CPU year of a P4 - 2.4GHz.
Showing 1-4 of 4 results.
Comments