cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063665 Number of ways 1/n can be written as 1/x^2 + 1/y^2 with y >= x >= 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Jul 25 2001

Keywords

Comments

Number of ordered pairs (x,y), with n = (x^2)(y^2)/(x^2 + y^2) and y >= x > 0. - Antti Karttunen, Nov 07 2018

Examples

			a(90)=1 since 1/90 = 1/10^2 + 1/30^2
a(98)=2 since 1/98 = 1/10^2 + 1/70^2 = 1/14^2 + 1/14^2.
a(14400) = 3 since 1/14400 = 1/130^2 + 1/312^2 = 1/136^2 + 1/255^2 = 1/150^2 + 1/200^2. - _Antti Karttunen_, Nov 07 2018
		

Crossrefs

Programs

  • PARI
    A063665(n) = { my(s=0); for(x=1,n,for(y=x,n,if((n*(x*x+y*y)) == (x*x*y*y), s++))); (s); }; \\ Antti Karttunen, Nov 07 2018
    
  • PARI
    A063665(n) = { my(s=0,y); for(x=sqrtint(n),n,my(x2=x*x); if((x2>n)&&issquare((n*x2)/(x2-n),&y)&&(1==denominator(y))&&(y>=x),s++)); (s); }; \\ Antti Karttunen, Nov 07 2018

Extensions

Definition clarified by Antti Karttunen, Nov 07 2018