A063668 Numbers of the form 12*k + 2 with nonempty inverse totient set.
2, 110, 506, 2162, 3422, 4970, 6806, 11342, 13310, 17030, 27722, 31862, 36290, 51302, 56882, 62750, 68906, 96410, 120062, 128522, 146306, 175142, 185330, 195806, 217622, 228962, 240590, 252506, 267674, 316406, 343982, 358202, 417962, 433622, 465806, 516242
Offset: 1
Keywords
Examples
1407782 = 1186*1187 where 1187 is a prime congruent to 11 modulo 12, so 1407782 is a term, with invphi(1407782) = {1408969, 2817938} = {1187^2, 2*1187^2}. 267674 = 22*23^3 where 23 is a prime congruent to 11 modulo 12, so 267674 is a term, with invphi(267674) = {279841, 559682} = {23^4, 2*23^4}. - _Jianing Song_, Dec 30 2018
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5000 (terms 1..315 from Jianing Song)
Programs
-
PARI
A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1) isok(n) = my(p=A006530(n), e=if(n>1, valuation(n,p), 1)); (n==2) || (p%12==11&&e%2&&n==(p-1)*p^e) \\ Jianing Song, Dec 30 2018
-
PARI
isok(n) = #invphi(n) && !((n-2) % 12); \\ Michel Marcus, Dec 30 2018; using the invphi script by Max Alekseyev
-
PARI
isok(m) = !((m-2) % 12) && istotient(m); \\ Michel Marcus, Apr 20 2023
Extensions
Three missing terms added by Jianing Song, Dec 30 2018
Comments