A063673 Denominators of convergents to Pi by Farey fractions.
1, 4, 5, 6, 7, 57, 64, 71, 78, 85, 92, 99, 106, 113, 16604, 16717, 16830, 16943, 17056, 17169, 17282, 17395, 17508, 17621, 17734, 17847, 17960, 18073, 18186, 18299, 18412, 18525, 18638, 18751, 18864, 18977, 19090, 19203, 19316, 19429, 19542, 19655, 19768, 19881, 19994, 20107, 20220, 20333, 20446, 20559, 20672, 20785
Offset: 1
Examples
333/106 = 3.1415094... is 99.99% accurate; 355/113 = 3.1415929... is 99.99999% accurate.
Links
- P. D. Howard, Table of n, a(n) for n = 1..18865
- Ainsworth, Dawson, Piianta, and Warwick, The Farey Sequence.
- Krishnan Balasubramanian and Ernest R. Davidson, Rational approximations to pie: transcendental pi and Euler's Constant e, J. Math. Chem. (2023).
- Bhavsar and Thaker, Rational Approximation Using Farey Sequence: Review.
- Das, Halder, Pratihar, and Bhowmick, Properties of Farey Sequence and their Applications to Digital Image Processing, arXiv:1509.07757 [cs.OH], 2015.
- Srinivasa Ramanujan, Squaring the circle, Wikisource, Journal of the Indian Mathematical Society, v, 1913, page 132.
- Eric Weisstein's World of Mathematics, Farey Sequence.
- Dylan Zukin, The Farey Sequence and Its Niche(s).
Programs
-
Mathematica
FareyConvergence[x_, n_] := Block[{n1 = 0, d1 = n9 = d9 = 1, F = 0, fp = FractionalPart@ x, lst}, $MaxExtraPrecision = Max[50, n + 10]; lst = If[2 fp > 1, {Ceiling@ x}, {Floor@ x}]; While[d1 + d9 < n, a1 = n1/d1; a9 = n9/d9; n0 = n1 + n9; d0 = d1 + d9; a0 = n0/d0; If[a0 < fp, a1 = a0; n1 = n0; d1 = d0, a9 = a0; n9 = n0; d9 = d0]; If[Abs[fp - F] > Abs[fp - a0], F = a0; AppendTo[lst, a0 + IntegerPart@ x]]]; lst]; Denominator@ FareyConvergence[Pi, 10^10] (* Robert G. Wilson v, May 11 2020 *)
-
PARI
A063673(limit)= my(best=Pi-3, tmp); for(n=1,limit, tmp=abs(round(Pi*n)/n-Pi); if(tmp
Charles R Greathouse IV, Aug 23 2006 (APL (NARS2000)) B⍸∪⌊\B←|(○1)-(⌊.5+○A)÷A←⍳100000 \\ Michael Turniansky, Jun 09 2015
Extensions
More terms from Charles R Greathouse IV, Aug 23 2006
More terms from M. F. Hasler, Apr 03 2013
Name simplified by Robert G. Wilson v, May 11 2020
Comments