cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063686 Triangular array: T(n,k) is the number of binary necklaces (no turning over) of length n whose longest run of 1's has length k. Table begins at n=0, k=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 4, 2, 1, 1, 1, 1, 4, 6, 4, 2, 1, 1, 1, 1, 7, 11, 8, 4, 2, 1, 1, 1, 1, 9, 19, 14, 8, 4, 2, 1, 1, 1, 1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1, 1, 18, 56, 50, 30, 16, 8, 4, 2, 1, 1, 1, 1, 30, 101, 96, 59, 32, 16, 8, 4, 2, 1, 1, 1
Offset: 0

Views

Author

Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 22 2001

Keywords

Comments

Column k=1 appears to be A032190(n), n=2,3,...

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1, 1;
  1, 2, 1, 1, 1;
  1, 2, 2, 1, 1, 1;
  1, 4, 4, 2, 1, 1, 1;
  1, 4, 6, 4, 2, 1, 1, 1;
  1, 7, 11, 8, 4, 2, 1, 1, 1;
  1, 9, 19, 14, 8, 4, 2, 1, 1, 1;
  1, 14, 33, 27, 16, 8, 4, 2, 1, 1, 1;
  ...
		

Crossrefs

Cf. A000358, A093305, A280218 (necklaces avoiding 00, 000, 0000).

Programs

  • PARI
    \\ here R(n) is A048887 transposed
    R(n)={Mat(vector(n, k, Col((1-x)/(1-2*x+x^(k+1)) - 1 + O(x*x^n))))}
    S(M)={matrix(#M-1, #M-1, n, k, if(kAndrew Howroyd, Oct 15 2017

Extensions

T(0,0)=1 from Andrew Howroyd, Oct 15 2017