A063713 Numbers n such that there exist primes p, q, r with n*2 = p - r = r + q (values of r are given in A063714).
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 39, 42, 43, 45, 46, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 63, 65, 66, 67, 69, 70, 71, 72, 75, 77, 78, 80, 81, 84, 85, 87, 88, 90, 93, 96, 97, 98, 99, 100, 101, 102, 105
Offset: 1
Keywords
Examples
10*2 = 20 = 23 - 3 = 3 + 17, A063714(7) = 3; 11*2 = 22 = 41 - 19 = 19 + 3, A063714(8) = 19 28 is missing because we have the prime sums (Goldbach): 5 + 23 = 11 + 17 and differences with primes less 28: 31 - 3 = 41 - 13 = 47 - 19; none of these have a prime in common.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local k; k:= 1; while k < 2*n do k:= nextprime(k); if isprime(2*n+k) and isprime(2*n-k) then return true fi od; false end proc: select(filter, [$1..1000]); # Robert Israel, Oct 09 2017
-
Mathematica
okQ[n_] := AnyTrue[Prime[Range[PrimePi[2 n - 2]]], PrimeQ[2 n + #] && PrimeQ[2 n - #]&]; Select[Range[105], okQ] (* Jean-François Alcover, Feb 12 2018 *)