cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063741 Smallest number whose inverse cototient set has n elements.

Original entry on oeis.org

10, 0, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 143, 119, 197, 167, 279, 233, 281, 209, 269, 323, 299, 359, 497, 329, 455, 605, 389, 461, 479, 419, 539, 599, 509, 755, 791, 713, 875, 797, 719, 629, 659, 1025, 1163, 929, 779, 1193, 1121, 899, 1133, 1091, 839
Offset: 0

Views

Author

Labos Elemer, Aug 13 2001

Keywords

Comments

Note that 1 is the only number that has infinitely many cototient-inverses, namely, all the primes.

Examples

			For n = 1, 2, 3, 4, 5, ..., the corresponding inverse sets are as follows: {}, {4}, {6, 8}, {12, 14, 16}, {95, 119, 143, 529}, {75, 155, 203, 299, 323}, ..., {455, 815, 1727, 2567, 2831, 4031, 4247, 4847, 5207, 6431, 6527, 6767, 6887, 7031, 27889}, including 0, 1, 2, 3, 4, 5, ..., 15 numbers.
		

Crossrefs

Cf. A000010, A051953 (cototient: n - phi(n)), A063507.
Cf. A063740 (number of k such that cototient(k) = n).

Programs

  • Mathematica
    With[{s = Array[Count[Range[#^2], k_ /; k - EulerPhi@ k == #] &, 300, 2]}, ReplacePart[TakeWhile[First@ FirstPosition[s, #] + 1 & /@ Range[0, Max@ s], IntegerQ], 2 -> 0]] (* Michael De Vlieger, Jan 11 2018 *)

Formula

a(n) = min {x: |InvCot(x)| = n}.
a(n) = min { k | A063740(k) = n }. - M. F. Hasler, Jan 11 2018

Extensions

More terms from David Wasserman, Jul 11 2002