A063778 a(n) = the least integer that is polygonal in exactly n ways.
3, 6, 15, 36, 225, 561, 1225, 11935, 11781, 27405, 220780, 203841, 3368925, 4921840, 7316001, 33631521, 142629201, 879207616, 1383958576, 3800798001, 12524486976, 181285005825, 118037679760, 239764947345, 738541591425, 1289707733601, 1559439365121
Offset: 1
Examples
a(3) = 15 because 15 is the least integer which is polygonal in 3 ways (15 is n-gonal for n = 3, 6, 15).
Links
- Eric Weisstein's World of Mathematics, Polygonal Number.
Crossrefs
Programs
-
Maple
A063778 := proc(nmax) local a,n,ps ; a := [seq(0,i=1..nmax)] ; n := 1 ; while true do ps := A129654(n) ; if ps > 0 and ps <= nmax and n > 1 then if op(ps,a) = 0 then a := subsop(ps=n,a) ; print(a) ; fi ; fi ; n := n+1 ; end: RETURN(a) ; end: A063778(30) ; # R. J. Mathar, May 14 2007
-
Mathematica
P[m_, r_] := P[m, r] = r*(4 + m*(r - 1) - 2*r)/2; a[n_Integer] := a[n] = Module[{c, r, m, p, f}, p = 0; f = False; While[!f, p++; c = 0; For[m = 3, m <= p, m++, For[r = 1, r <= p, r++, If[p == P[m, r], c++;];];]; If[c == n, f = True;];]; p]; Table[a[n], {n, 1, 5}] (* Robert P. P. McKone, Jan 02 2024 *)
-
PARI
a(n) = my(k=3); while (sum(p=3, k, ispolygonal(k, p)) != n, k++); k; \\ Michel Marcus, Aug 17 2024
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 23 2007
a(22)-a(27) from Donovan Johnson, Dec 08 2010
Comments