cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063835 Three times partitioned numbers: the number of ways a number can be partitioned in (not necessarily different) parts and each part again so partitioned a second and a third time.

Original entry on oeis.org

1, 5, 14, 51, 125, 429, 1039, 3258, 8254, 23554, 58934, 168803, 412177, 1114550, 2795446, 7345875, 18035424, 46875324, 114272057, 291692396, 709742614, 1774402071, 4290848175, 10672950659, 25572179792, 62670553073, 149978278320
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Crossrefs

Cf. A063834.

Programs

  • Mathematica
    Table[Plus@@((Apply[Plus, #/. i_Integer-> PartitionsP[i], {1}]/. f->Times)& /@ Flatten[Flatten[Outer[f, Sequence@@(Partitions/@#), 1]]&/@Partitions[w]]), {w, 16}]
    nmax = 40; A047968 = Table[Sum[PartitionsP[d], {d, Divisors[n]}], {n, 1, nmax}]; conv = Table[Sum[A047968[[j]]*PartitionsP[m - j], {j, 1, m}], {m, 1, nmax}]; A063835 = Rest[CoefficientList[Series[Product[1/(1 - conv[[k]]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 27 2016 *)

Formula

G.f.: 1/Product(1-b(n)*x^n, n=1..infinity), where b(n) is sum of number of partitions of parts in all partitions of n; b() is convolution of A047968() and A000041(). - Vladeta Jovovic, Nov 22 2005
From Vaclav Kotesovec, Mar 28 2016: (Start)
a(n) ~ c * 21^(n/4), where
c = 31506.382471540934704971753670563958673161001663... if mod(n,4) = 0
c = 31502.248225846169487427060315658509213347537914... if mod(n,4) = 1
c = 31506.175349116205868096360427802563935891182649... if mod(n,4) = 2
c = 31502.232274793501377850265964413938565498517297... if mod(n,4) = 3
(End)

Extensions

More terms from Vladeta Jovovic, Nov 22 2005