cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063894 Start with x, y; then concatenate each word in turn with all preceding words, getting x y xy xxy yxy xxxy yxxy xyxxy ...; sequence gives number of words of length n. Also binary trees by degree: x y (x,y) (x,(x,y)) (y,(x,y)) (x,(x,(x,y))) (y,(x,(x,y))) ((x,y),(x,(x,y)))...

Original entry on oeis.org

2, 1, 2, 4, 10, 25, 68, 187, 532, 1532, 4492, 13308, 39870, 120433, 366656, 1123504, 3463050, 10729234, 33396202, 104381385, 327477814, 1030903514, 3255394686, 10309154738, 32732315724, 104177891232, 332308237666, 1062192108053
Offset: 1

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Aug 29 2001

Keywords

Crossrefs

Cf. A063895.

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Sum[a[k]*a[n-k], {k, 1, Floor[(n-1)/2]}] + If[EvenQ[n], (a[n/2]-1)*a[n/2]/2, 0]; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Feb 20 2012, from formula *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=O(x); while(m<=n,m*=2; A=1-sqrt(1-4*x+subst(A,x,x^2))); polcoeff(A,n))

Formula

G.f. A(x)=1-sqrt(1-4x+A(x^2)) satisfies A(x)^2-2A(x)+4x-A(x^2)=0, A(0)=0. - Michael Somos, Sep 06 2003
a(n)=(sum a(i)a(j), i+j=n, i1. a(1)=2.