cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063949 Every number is the sum of 4 squares; these are the numbers n for which the first square can be taken to be any positive square < n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 42, 45, 46, 49, 50, 52, 54, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 78, 81, 82, 84, 86, 89, 90, 94, 97, 98, 100, 102, 105, 106, 110, 114, 118, 122, 126, 129, 130
Offset: 1

Views

Author

N. J. A. Sloane, Sep 04 2001

Keywords

Comments

The only primes of this form are 2, 3, 5, 7, 13, 17, 41, 73, 89, 97, 257, 313, 353, 433.
Also, the numbers n such that for no 0 < k < sqrt(n), n-k^2 is in A004215, i.e., of the form 4^i(8j+7). The largest odd number in this sequence is a(322) = 945, cf. A063951. - M. F. Hasler, Jan 26 2018

References

  • J. H. Conway, personal communication, Aug 27, 2001.

Crossrefs

Programs

  • Mathematica
    t1 = {1, 3, 5, 7, 9, 13, 15, 17, 21, 25, 33, 41, 45, 49, 57, 65, 73, 81, 89, 97, 105, 129, 145, 153, 169, 177, 185, 201, 209, 217, 225, 257, 273, 297, 305, 313, 329, 345, 353, 385, 425, 433, 441, 481, 513, 561, 585, 609, 689, 697, 713, 817, 825, 945}; Union[{0}, t1, 4*t1, 4*Range[0, 999] + 2] (* T. D. Noe, Feb 22 2012 *)
  • PARI
    is_A063949(n)=if(bittest(n,0),is_A063951(n),n%4==2||is_A063951(n/4)||!n) \\ M. F. Hasler, Jan 26 2018
    
  • PARI
    #A063949_vec=select( is_A063949, [0..3780]) /* or: setunion(setunion(concat(0,A063951), 4*A063951),apply(t->t-2,4*[1..945])) */
    
  • PARI
    A063949(n)=if(n>1054,n*4-438,A063949_vec[n]) \\ M. F. Hasler, Jan 26 2018

Formula

Consists of 0, the 54 odd numbers in A063951, 4 times those numbers and all numbers of the form 4m+2.
a(n) = 4*(n-110) + 2 for all n > 1054. - M. F. Hasler, Jan 26 2018