cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063951 Every number is the sum of 4 squares; these are the odd numbers n such that the first square can be taken to be any positive square < n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 21, 25, 33, 41, 45, 49, 57, 65, 73, 81, 89, 97, 105, 129, 145, 153, 169, 177, 185, 201, 209, 217, 225, 257, 273, 297, 305, 313, 329, 345, 353, 385, 425, 433, 441, 481, 513, 561, 585, 609, 689, 697, 713, 817, 825, 945
Offset: 1

Views

Author

N. J. A. Sloane, Sep 04 2001

Keywords

Comments

Odd numbers n such that for all k with 1 <= k < sqrt(n), n - k^2 is not in A004215. - Robert Israel, Jan 24 2018
The only numbers for which allowing k = 0 would make a difference are 7 and 15: These two are not in A063954.

References

  • J. H. Conway, personal communication, Aug 27, 2001.

Crossrefs

Programs

  • Maple
    isA004215:= proc(n)
      local t;
      t:= padic:-ordp(n,2);
      t::even and (n/2^t) mod 8 = 7
    end proc:
    filter:= proc(n) andmap(not(isA004215), [seq(n - k^2, k=1..floor(sqrt(n-1)))]) end proc:
    select(filter, [seq(i,i=1..1000,2)]); # Robert Israel, Jan 24 2018
  • Mathematica
    ok[n_] := Range[ Floor[ Sqrt[n] ]] == DeleteCases[ Union[ Flatten[ PowersRepresentations[n, 4, 2]]], 0, 1, 1]; A063951 = Select[ Range[1, 999, 2], ok] (* Jean-François Alcover, Sep 12 2012 *)
  • PARI
    is_A063951(n)=bittest(n,0)&&!forstep(k=sqrtint(n-1),1,-1,isA004215(n-k^2)&&return) \\ M. F. Hasler, Jan 26 2018
    
  • PARI
    A063951=select(is_A063951,[1..945]) \\ M. F. Hasler, Jan 26 2018

Formula

This A063951 = A063954 U { 7, 15 }. - M. F. Hasler, Jan 27 2018