A063980 Pillai primes: primes p such that there exists an integer m such that m! + 1 == 0 (mod p) and p != 1 (mod m).
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499, 503, 521, 557, 563, 569, 571, 577, 593, 599, 601, 607
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- G. E. Hardy and M. V. Subbarao, A modified problem of Pillai and some related questions, Amer. Math. Monthly, Vol. 109, No. 6 (2002), pp. 554-559; alternative link.
- Wikipedia, Pillai prime.
Programs
-
Mathematica
ok[p_] := (r = False; Do[If[Mod[m! + 1, p] == 0 && Mod[p, m] != 1, r = True; Break[]], {m, 2, p}]; r); Select[Prime /@ Range[111], ok] (* Jean-François Alcover, Apr 22 2011 *) nn=1000; fact=1+Rest[FoldList[Times,1,Range[nn]]]; t={}; Do[p=Prime[i]; m=2; While[m
-
PARI
is(p)=my(t=Mod(5040,p)); for(m=8, p-2, t*=m; if(t==-1 && p%m!=1, return(isprime(p)))); 0 \\ Charles R Greathouse IV, Feb 10 2013
Extensions
More terms from David W. Wilson, Sep 08 2001
Comments