A063993 Number of ways of writing n as an unordered sum of exactly 3 nonzero triangular numbers.
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 5, 1, 2, 1, 2, 5, 3, 3, 1, 4, 2, 3, 2, 2, 4, 4, 2, 1, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4, 2, 1, 6, 1, 5, 3, 3, 5, 2, 2, 2, 5, 2, 5, 4, 2, 4, 5, 3, 1
Offset: 0
Examples
5 = 3 + 1 + 1, so a(5) = 1.
Links
- T. D. Noe, Table of n, a(n) for n=0..5050
Crossrefs
Programs
-
Haskell
a063993 n = length [() | let ts = takeWhile (< n) $ tail a000217_list, x <- ts, y <- takeWhile (<= x) ts, let z = n - x - y, 0 < z, z <= y, a010054 z == 1] -- Reinhard Zumkeller, Jul 20 2012
-
Maple
A063993 := proc(n) local a,t1idx,t2idx,t1,t2,t3; a := 0 ; for t1idx from 1 do t1 := A000217(t1idx) ; if 3*t1 > n then break; end if; for t2idx from t1idx do t2 := A000217(t2idx) ; if t1+t2 > n then break; end if; t3 := n-t1-t2 ; if t3 >= t2 then if isA000217(t3) then a := a+1 ; end if; end if ; end do: end do: a ; end proc: # R. J. Mathar, Apr 28 2020
-
Mathematica
a = Table[ n(n + 1)/2, {n, 1, 15} ]; b = {0}; c = Table[ 0, {100} ]; Do[ b = Append[ b, a[ [ i ] ] + a[ [ j ] ] + a[ [ k ] ] ], {k, 1, 15}, {j, 1, k}, {i, 1, j} ]; b = Delete[ b, 1 ]; b = Sort[ b ]; l = Length[ b ]; Do[ If[ b[ [ n ] ] < 100, c[ [ b[ [ n ] ] + 1 ] ]++ ], {n, 1, l} ]; c
-
PARI
trmx(n)=my(k=sqrtint(8*n+1)\2);if(k^2+k>2*n,k-1,k) trmn(n)=trmx(ceil(n)-1)+1 a(n)=if(n<3, return(0)); sum(a=trmn(n/3),trmx(n-2),my(t=n-a*(a+1)/2);sum(b=trmn(t/2),min(trmx(t-1),a), ispolygonal(t-b*(b+1)/2,3))) \\ Charles R Greathouse IV, Jul 07 2022
Extensions
More terms from Robert G. Wilson v, Sep 20 2001
Comments